Metric operators for quasi-Hermitian Hamiltonians and symmetries of equivalent Hermitian Hamiltonians

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41244017
(http://iopscience.iop.org/1751-8121/41/24/244017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.149
The article was downloaded on 03/06/2010 at 06:54

Please note that terms and conditions apply.

Metric operators for quasi-Hermitian Hamiltonians and symmetries of equivalent Hermitian Hamiltonians

Ali Mostafazadeh
Department of Mathematics, Koç University, 34450 Sariyer, Istanbul, Turkey
E-mail: amostafazadeh@ku.edu.tr

Received 27 August 2007, in final form 19 September 2007
Published 3 June 2008
Online at stacks.iop.org/JPhysA/41/244017

Abstract

We give a simple proof of the fact that every diagonalizable operator that has a real spectrum is quasi-Hermitian and show how the metric operators associated with a quasi-Hermitian Hamiltonian are related to the symmetry generators of an equivalent Hermitian Hamiltonian.

PACS number: 03.65.-w

1. Introduction

Given a separable Hilbert space \mathcal{H} and a linear operator $H: \mathcal{H} \rightarrow \mathcal{H}$ that has a real spectrum and a complete set of eigenvectors, one can construct a new (physical) Hilbert space $\mathcal{H}_{\text {phys }}$ in which H acts as a self-adjoint operator. This allows for the formulation of a consistent quantum theory where the observables and in particular Hamiltonian need not be self-adjoint with respect to the standard ($\left.L^{2}-\right)$ inner product on \mathcal{H} [1]. The physical Hilbert space $\mathcal{H}_{\text {phys }}$ and the observables are determined in terms of a (bounded, everywhere-defined, invertible) positive-definite metric operator $\eta_{+}: \mathcal{H} \rightarrow \mathcal{H}$ that renders H pseudo-Hermitian [2], i.e., H satisfies ${ }^{1}$

$$
\begin{equation*}
H^{\dagger}=\eta_{+} H \eta_{+}^{-1} . \tag{1}
\end{equation*}
$$

This marks the basic significance of the metric operator η_{+}. The positivity of η_{+}implies that H belongs to a special class of pseudo-Hermitian operators called quasi-Hermitian operators [3].

The fact that for a given linear operator H with a real (discrete) spectrum and a complete set of eigenvectors, one can always find a (positive-definite) metric operator η_{+}fulfilling (1) has been established in [4], and the role of antilinear symmetries such as $\mathcal{P} \mathcal{T}$ has been elucidated

[^0]in [5] $]^{2}$. Further investigation into the properties of η_{+}has revealed its non-uniqueness [3, 7, 9] and the unitary equivalence of H and the Hermitian Hamiltonian
\[

$$
\begin{equation*}
h:=\rho H \rho^{-1}, \tag{2}
\end{equation*}
$$

\]

where $\rho:=\sqrt{\eta}_{+},[10] .{ }^{3}$ The latter observation has been instrumental in providing an objective assessment of the 'complex ($\mathcal{P} \mathcal{T}$-symmetric) extension of quantum mechanics' [11, 12]. It has also played a central role in clarifying the mysteries associated with the wrong-sign quartic potential [13]. In short, the pseudo-Hermitian quantum theory that is defined by the Hilbert space $\mathcal{H}_{\text {phys }}$ and the Hamiltonian H admits an equivalent Hermitian description in terms of the (standard) Hilbert space \mathcal{H} and the Hermitian Hamiltonian h. However, the specific form of h depends on the choice of η_{+}. This has motivated the search for alternative methods of computing the most general metric operator for a given H, [14-19].

In this paper we first give a simple proof of the existence of metric operators η_{+}and then relate η_{+}to the symmetries of an equivalent Hermitian Hamiltonian.

2. The existence of metric operators

Let $H: \mathcal{H} \rightarrow \mathcal{H}$ be a (closed) operator with a real spectrum, and suppose that it is diagonalizable, i.e., there are operators $T, H_{d}: \mathcal{H} \rightarrow \mathcal{H}$ such that T is invertible (bounded and hence closed),

$$
\begin{equation*}
H=T^{-1} H_{d} T \tag{3}
\end{equation*}
$$

and H_{d} is diagonal in some orthonormal basis of \mathcal{H}. The latter property implies that H_{d} is a normal operator. Furthermore, because H and H_{d} are isospectral, the spectrum of H_{d} is also real. This together with the fact that H_{d} is normal imply that it is Hermitian (self-adjoint).

Next, recall that because T is a closed, invertible operator it admits a polar decomposition [20]:

$$
\begin{equation*}
T=U \rho \tag{4}
\end{equation*}
$$

where U is a unitary operator and $\rho=|T|:=\sqrt{T^{\dagger} T}$ is invertible and positive (definite). Inserting (4) into (3) and introducing

$$
\begin{equation*}
h:=U^{\dagger} H_{d} U \tag{5}
\end{equation*}
$$

we find

$$
\begin{equation*}
H=\rho^{-1} h \rho \tag{6}
\end{equation*}
$$

Because ρ is positive definite, so is $\eta_{+}:=\rho^{2}$. Because H_{d} is Hermitian and U is unitary, h is Hermitian. In view of this and the fact that ρ is also Hermitian, (6) implies $H^{\dagger}=\eta_{+} H \eta_{+}^{-1}$. This proves the existence of a metric operator η_{+}that makes H, η_{+}-pseudo-Hermitian.

The above proof is shorter than the one given in [4]. But it has the disadvantage that it does not offer a method of computing η_{+}.

3. Metric operators and symmetry generators

Let η_{+}and η_{+}^{\prime} be a pair of metric operators rendering H pseudo-Hermitian, $\rho:=\sqrt{\eta}_{+}$, and $\rho^{\prime}:=\sqrt{\eta_{+}^{\prime}}$. Then the Hermitian Hamiltonian operators

$$
\begin{equation*}
h:=\rho H \rho^{-1}, \quad h^{\prime}:=\rho^{\prime} H \rho^{\prime-1} \tag{7}
\end{equation*}
$$

[^1]are unitary equivalent to H, [10]. It is easy to see that h and h^{\prime} are related by the similarity transformation
\[

$$
\begin{equation*}
h^{\prime}=A h A^{-1}, \tag{8}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
A:=\rho^{\prime} \rho^{-1} \tag{9}
\end{equation*}
$$

Now, taking the adjoint of both sides of (8) and using the fact that h and h^{\prime} are Hermitian, we find

$$
\begin{equation*}
\left[A^{\dagger} A, h\right]=0 \tag{10}
\end{equation*}
$$

This means that $A^{\dagger} A$ is a (positive-definite) symmetry generator for the Hamiltonian h. Furthermore, (9) and $\eta_{+}^{\prime}=\rho^{\prime 2}$ lead to the curious relation

$$
\begin{equation*}
\eta_{+}^{\prime}=\rho A^{\dagger} A \rho \tag{11}
\end{equation*}
$$

Another immediate consequence of (9) is

$$
\begin{equation*}
A^{\dagger}=\rho^{-1} A \rho \tag{12}
\end{equation*}
$$

i.e., A is ρ^{-1}-pseudo-Hermitian [2].

It is easy to show that the converse relationship also holds, i.e., given an invertible linear operator $A: \mathcal{H} \rightarrow \mathcal{H}$ that satisfies (9) and (12), the operator η^{\prime} defined by

$$
\begin{equation*}
\eta_{+}^{\prime}:=\rho A^{\dagger} A \rho . \tag{13}
\end{equation*}
$$

renders H, η^{\prime}-pseudo-Hermitian.
The above analysis shows that given a metric operator $\eta_{+}=\rho^{2}$ for the Hamiltonian H, we can express any other metric operator for H in the form

$$
\begin{equation*}
\eta_{+}^{\prime}=\rho S \rho \tag{14}
\end{equation*}
$$

where S is a positive-definite symmetry generator of h such that there is a ρ^{-1}-pseudoHermitian operator A satisfying

$$
\begin{equation*}
S=A^{\dagger} A \tag{15}
\end{equation*}
$$

In practice, the construction of the symmetry generators S of the Hermitian operator h is easier than that of the ρ^{-1}-pseudo-Hermitian operators A. This calls for a closer look at the structure of A.

In view of (15), we can express A in the form

$$
\begin{equation*}
A=U \sigma \tag{16}
\end{equation*}
$$

where $U: \mathcal{H} \rightarrow \mathcal{H}$ is a unitary operator and $\sigma:=\sqrt{S}$. This reduces the characterization of A to that of appropriate unitary operators U that ensure ρ^{-1}-pseudo-Hermiticity of A.

Inserting (16) in (12) and introducing

$$
\begin{equation*}
B:=\rho U \tag{17}
\end{equation*}
$$

we find

$$
\begin{equation*}
B^{\dagger}=\sigma B \sigma^{-1} \tag{18}
\end{equation*}
$$

That is, B is σ-pseudo-Hermitian. Moreover, (17) implies

$$
\begin{equation*}
\eta_{+}=B B^{\dagger} . \tag{19}
\end{equation*}
$$

Conversely, given a positive-definite symmetry generator S and a \sqrt{S}-pseudo-Hermitian operator B satisfying (19), we can easily show that the operator

$$
\begin{equation*}
U:=\rho^{-1} B \tag{20}
\end{equation*}
$$

is unitary and A given by (16) is ρ^{-1}-pseudo-Hermitian. As a result, the most general metric operator η_{+}^{\prime} is given by (14), alternatively

$$
\begin{equation*}
\eta_{+}^{\prime}=(\sqrt{S} \rho)^{\dagger}(\sqrt{S} \rho) \tag{21}
\end{equation*}
$$

where S is a positive-definite symmetry generator of h such that there is a \sqrt{S}-pseudo-Hermitian operator B satisfying $\eta_{+}=B B^{\dagger}$.

4. Concluding remarks

The existence of a positive-definite metric operator η_{+}that renders a diagonalizable Hamiltonian operator H with a real spectrum η_{+}-pseudo-Hermitian can be directly established using the well-known polar decomposition of closed operators. Previously, we have pointed out that one can describe the most general η_{+}in terms of a given metric operator and certain symmetry generators A of H, [7]. Here we offer another description of the most general η_{+}in terms of certain positive-definite symmetry generators S of a given equivalent Hamiltonian h. Unlike the symmetry generators A of H that are non-Hermitian, the operators S are standard Hermitian symmetry generators. This makes the results of this paper more appealing.

For the cases that h is an element of a dynamical Lie algebra \mathcal{G} with \mathcal{H} furnishing a unitary irreducible representation of \mathcal{G}, one can identify the positive-definite symmetry generators S with certain functions of a set of mutually commuting elements of \mathcal{G} that includes h. For example, one can construct S for the two-level system, where $\mathcal{G}=u(2)$, or the generalized (and simple) Harmonic oscillator where $\mathcal{G}=s u(1,1)$, [21]. These respectively correspond to the general two-level quasi-Hermitian Hamiltonians [18] and the class of quasi-Hermitian Hamiltonians that are linear combinations of x^{2}, p^{2} and $\{x, p\}$ such as the one considered in [22]. For these systems one can also construct a metric operator η_{+}and its positive square root ρ. Nevertheless, the implementation of formula (14) for obtaining the most general metric operator proves impractical. This is because it is not easy to characterize the general form of \sqrt{S}-pseudo-Hermitian operators B that would fulfil $\eta_{+}=B B^{\dagger}$.

Although formula (14) seems to be of limited practical value, it is conceptually appealing because it traces the non-uniqueness of the metric operator to the symmetries of the equivalent Hermitian Hamiltonians.

References

[1] Mostafazadeh A and Batal A 2004 J. Phys. A: Math. Gen. 3711645
[2] Mostafazadeh A 2002 J. Math. Phys. 43205
[3] Scholtz F G, Geyer H B and Hahne F J W 1992 Ann. Phys., NY 21374
[4] Mostafazadeh A 2002 J. Math. Phys. 432814
[5] Mostafazadeh A 2002 J. Math. Phys. 433944
[6] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89270401 Bender C M, Brody D C and Jones H F 2004 Phys. Rev. Lett. 92119902 (erratum)
[7] Mostafazadeh A 2003 J. Math. Phys. 44974
[8] Mostafazadeh A 2005 J. Phys. A: Math. Gen. 383213
[9] Mostafazadeh A 2002 Nucl. Phys. B 640419
[10] Mostafazadeh A 2003 J. Phys. A: Math. Gen. 367081
[11] Mostafazadeh A 2003 Preprint quant-ph/0310164 Mostafazadeh A 2004 Czech. J. Phys. 541125
[12] Figueira de Morisson C and Fring A 2006 J. Phys. A: Math. Gen. 399269
[13] Jones H F and Mateo J 2006 Phys. Rev. D 73085002
[14] Mostafazadeh A 2006 J. Phys. A: Math. Gen. 3910171
[15] Scholtz F G and Geyer H B 2006 Phys. Lett. B 63484
[16] Mostafazadeh A 2006 J. Math. Phys. 47072103
[17] Figueira de Morisson C and Fring A 2006 Czech. J. Phys. 56899
[18] Mostafazadeh A and Özçelik S 2006 Turk. J. Phys. 30437
[19] Musumbu D P, Geyer H B and Heiss W D 2007 J. Phys. A: Math. Gen. 40 F75
[20] Reed M and Simon B 1980 Functional Analysis vol 1 (San Diego: Academic)
[21] Mostafazadeh A 2001 Dynamical Invariants, Adiabatic Approximation, and the Geometric Phase (New York: Nova)
[22] Swanson M S 2004 J. Math. Phys. 45585

[^0]: ${ }^{1}$ Here and throughout this article, we use A^{\dagger} to denote the adjoint of a linear operator A that is defined using the inner product $\langle\cdot \mid \cdot\rangle$ of \mathcal{H} according to: $\langle\psi \mid A \phi\rangle=\langle A \psi \mid \phi\rangle$ for all $\psi, \phi \in \mathcal{H}$.

[^1]: 2 The alternative approach using the so-called $\mathcal{C P} \mathcal{T}$-inner product [6] is equivalent to a specific choice of the metric operator [7, 8].
 ${ }^{3}$ Given a positive operator $X: \mathcal{H} \rightarrow \mathcal{H}, \sqrt{X}$ denotes the unique positive square root of X.

